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Abstract. We study the sizes and thermal properties of glueballs in a three-dimensional compact Abelian
gauge model on improved lattice. We predict the radii of ~ 0.60 and ~ 1.12 in the units of string tension,
or ~0.28 and ~ 0.52 fm, for the scalar and tensor glueballs, respectively. We perform a well controlled
extrapolation of the radii to the continuum limit and observe that our results agree with the predicted
values. Using Monte Carlo simulations, we extract the pole mass of the lowest scalar and tensor glueballs
from the temporal correlators at finite temperature. We see clear evidence of the deconfined phase, and the
transition appears to be similar to that of the two-dimensional XY model as expected from universality ar-
guments. Our results show no significant changes in the glueball wave functions and masses in the deconfined

phase.

PACS. 11.15.Ha; 12.38.Gc; 11.15.Me

1 Introduction

The prediction of glueball masses has since long been at-
tempted in lattice gauge theory calculations [1-7]. These
calculations show that the lowest-lying scalar, tensor and
axial vector glueballs lie in the mass region of 1-2.5 GeV.
While there is a long history of glueball mass calculations
in lattice QCD, little is known about the glueballs besides
their masses. Accurate lattice calculations of their size, ma-
trix elements and form factors would help considerably in
their experimental identification.

Glueball wave functions and sizes have been studied in
the past [8—11], but much of the early work contains uncon-
trolled systematic errors, most notably from discretisation
effects. The scalar glueball is particularly susceptible to
such errors for the Wilson gauge action, due to the pres-
ence of a critical end point of a line of phase transitions
in the fundamental-adjoint coupling plane. As this criti-
cal end point (which defines the continuum limit of a ¢*
scalar field theory) is neared, the coherence length in the
scalar channel becomes large, which means that the mass
gap in this channel becomes small; glueballs in other chan-
nels seem to be affected very little. Results in which the
scalar glueball was found to be significantly smaller than
the tensor were most likely due to contamination of the
scalar glueball from this non-QCD critical point [9]. On
the other hand, the calculations using operator overlaps
obtained from variational optimization for improved lat-
tice gauge action, which are designed to avoid spurious
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critical points, show that the scalar and tensor glueballs
were of typical hadronic dimensions [1,2,11]. A straight-
forward procedure to address the controversy over glueball
size is to measure the glueball wave function, much in the
same way as the meson and baryon wave functions were
measured [12].

In this paper, we study the low-lying scalar and tensor
glueballs and their wave functions with a renormalized tad-
pole improved Symanzik gauge action [13]. Our techniques
for calculating the glueball wave functions from Wilson
loop operators are outlined in Sect. 2. We present and dis-
cuss our results at zero temperature in Sect. 3. We extend
our method to examine the wave functions and masses at
finite temperature in this section. Here we give an explicit
interpretation of deconfinement in terms of the power-law
behaviour of the correlation function. Section 4 is devoted
to the summary and concluding remarks.

2 Wave functions of glueballs

In contrast with the techniques used in [9], we measure our
lattice operators from spatially connected Wilson loops.
Glueballs are colour-singlet states and one should be able
to construct them with closed-loop paths that are gauge
invariant. The choice of such loops eliminate the need for
gauge fixing!. Although the calculations in [9] have pro-

L 1t should be noted that gauge-invariant Wilson loops have
an a’ dependence, to be compared to the a? dependence of
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duced some interesting results, the approach suffers from
a basic problem: the observables are calculated from a lat-
tice version of the 2-glue operator, which risks a mixture of
glueball states with flux states?.

In this study we take a more direct approach to the
problem. We measure the observables in a three-step pro-
cedure. First, we calculate the lattice operator

B(it) =D (¢ (T, 1)+ ¢ (T+7,1)],

X

(1)

where ¢ is the plaquette operator and ¢ measures the
two-plaquette or two-loop component of the glueball wave
function. The r dependence will be reflected in the length
of links required to close the loops. From a suitable lin-
ear combinations of rotation, parity inversions and real or
imaginary parts of the operators involved in &, one can
construct glueball operators with desired quantum num-
bers [4,5,14,15]. Since we want to explore the nature of
wave functions, we focus only on the low-lying “symmet-
ric” and “antisymmetric” scalar channels (which are the
cosine and sine, respectively, of the Wilson loop in ques-
tion) and tensor glueball states.

The wave function and mass are obtained from the cor-
relation function:

C('Fa t) = <¢Jf ('Fa t) ¢(030)> s (2)
where one needs to subtract the vacuum contribution from
the correlator for the 07 state. The source can be held
fixed, while the sink takes on the r dependence. This proves
to be helpful in maintaining a good signal. The disentan-
gling of the glueball and torelon is usually taken care of
automatically by the choice of Wilson or Polyakov loops.

To increase the overlap with the lowest state and re-
duce the contamination from higher states, we exploit the
APE link smearing techniques [16]. The procedure is imple-
mented by an iterative replacement of the original spatial
link variable by a smeared link. This results in correlations
that reach their asymptotic behaviour at small time separa-
tions. In addition, the noise from ultraviolet fluctuations is
reduced. The smearing parameter is fixed to 0.7 and ten iter-
ations of the smearing process are used. To find the optimum
smearing value, n, we examine the ratio (at r =0 and 1)

C(r,t+1)/C(rt),

which should be maximum for good ground state domi-
nance. Using a 1 x 1 loop as template, the best signal is
obtained with four smearing steps, with 1x 1 and 2 x 2
loops being almost indistinguishable. At 8 = 2.0, the sig-
nal in 1 x 1 showed a slow convergence with n, hence 2 x 2

the two-link operator used in [9]. The lower dimension oper-
ator yields a linear dependence in the correlation function as
opposed to an a® dependence for Wilson loops. This improves
the glueball signal as a is reduced.

2 The link-link operator used in [9] sums up a large number
of loops; some of these loops have a zero winding number and
project on glueballs — others have a non-zero winding number
and project on flux states also called torelons.
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loops were preferred for optimum overlap. A typical value,
which proved to be sufficient for this case, was n = 2.

A second pass was made to measure the optimized cor-
relation matrices

Cij(t) = (D(ri, )D(r;,0)) = (B(ri))((r;)) . (3)
Let ) be the radial wave function of the kth eigen-
state of the transfer matrix, then

Cii (1) =Y o™ ()™ (ry)e ™" . (4)
%

The glueball masses and the wave functions are extracted
from the Monte Carlo average of C;;(t) by diagonalizing
the correlation matrices C(t) for successive times ¢:
C(t) = R(t)D()R(t) , ()
where D is a diagonal matrix of the eigenvalues and R a ro-
tation matrix whose columns are the eigenvectors of C.
Each eigenvector of C' matches an eigenstate 1(*) (1) of the
complete transfer matrix. As the wave function is largest
at the origin, one would first determine the glueball mass
with the optimal separation, and then fix that mass for
all 7, and extract the wave function for less optimal separa-
tions. Similar to the case of mesons [17], the wave function
is expected to decrease exponentially with the r at large
separations and is therefore fitted with the simple form

Y(r)=e /" (6)

to determine the effective radius r¢. The effective mass can
be read off directly from the largest eigenvalue correspond-
ing to the lowest energy:

_ )\Q(Tzo,t: 1)
e =g | 225 |- "

3 Simulation results and discussion

3.1 Results at zero temperature

Most of our Monte Carlo calculations are carried out on
a 162 x 16 lattice with periodic boundary conditions (162
is the space-like box and 16 is the extension in Euclidean
time direction). The gauge configurations are generated
using the Metropolis algorithm. After the equilibration,
configurations are stored every 250 sweeps; 3000 stored
configurations are used in the measurement of glueball
masses. Measurements made on the stored configurations
are binned into 10 blocks with each block containing an
average of 300 measurements. The mean and the final
errors are obtained using a single-elimination jackknife
method with each bin regarded as an independent data
point. Three sets of measurements were taken at (=
2.0,2.25 and 2.5. Some finite-size consistency checks are
done at 3 = 2.25 on an 20% x 20 lattice.
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Fig. 1. Correlation function for the 07" channel against ¢

The glueball correlation function for the 0™ channel
against t at 8 = 2.25 is shown in Fig. 1. It can be seen that
the expected behaviour of the correlation function is at-
tained virtually straight away. The absolute errors in the
correlation functions are expected to be independent of ¢
for large ¢. Our errors are consistent with this expectation.

An effective mass plot for the 8 = 2.5 simulation is pre-
sented in Fig. 2. For the 07 and 0=~ channels each it was
possible to find a fit region tyin—tmax in which convincing
plateaus were observed. The effective masses are found to
be stable using different values of ¢ in (7), which suggests
that the glueball ground state is correctly projected. At
B = 2.5, we noticed considerable fluctuations in the ten-
sor mass at large t. An acceptable fit was only possible for
t = [2-5]. To ensure the validity of our results, we compared
them to those obtained using

)\O(t B 1) - )‘O(t):| ) (8)

o
e = 10g [/\o(t)—Ao(t+ 1)
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Fig. 2. Effective mass plot for scalar and tensor glueball states
for B8 =2.5. The dashed horizontal lines indicate the plateau
values
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It was found that the evaluations of (7) and (8) yielded
results very consistent within statistical errors.

The wave functions are extracted at time separations
t =1 and 2. We found a little variation (less than two per-
cent) in the eigenvectors of C(¢) with ¢, which suggests that
there is no mixing with states of distinct masses. Typical
plots of the wave functions, normalised to unity at the ori-
gin, for the symmetric and antisymmetric scalar glueballs,
at § = 2.0,2.25 and 2.5 are shown in Figs. 3 and 4, respec-
tively. For guiding the eyes the Monte Carlo points of the
same (-value are connected with straight lines. The scalar
wave function shows the expected behaviour for all the (-
values analysed here. As for the antisymmetric channel we
notice the presence of negative contributions in the glueball
wave function for r > 6 at 8 = 2.5. However, these contribu-
tions do not persist when the lattice size is increased from
L =161t0 20 (Fig. 5). This would mean that these effects are
unphysical and can be described as a finite volume artifact.

For this reason we extract the effective radius of the
antisymmetric state from the wave function obtained at
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Fig. 3. Scalar 07 glueball wave functions measured on a 163
lattice for various values of 8
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Fig. 4. Scalar 0~ ~ glueball wave function on a 163 lattice at
B =2.0,2.25 and 2.5
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Fig. 5. Scalar 0~ ~ glueball wave function on a 20% lattice at
B =2.25 (open circles) and B = 2.5 (open triangles)

larger volume?®. The symmetric scalar glueball wave func-
tion, on the other hand, barely changes sign.

Figure 6 shows the wave function for the tensor glue-
ball, at 6 =2.0,2.25 and 2.5. The tensor wave function
remains positive and shows the expected flatness. It can be
seen that the tensor glueball is much more extended than
the scalar one as one moves towards higher 8-values. This
would imply that the tensor is therefore more sensitive to
the finite-size effects, which is very visible in the distor-
tion of the wave function for large r at 0 = 2.5. Naively
we would expect the spatial size at which we begin to en-
counter large finite-size effects to be related to the size of
the glueball.

The expected finite-size scaling behaviour of the mass
gap near the continuum critical point in this model is
not known; but Weigel and Janke [18] have performed
a Monte Carlo simulation for an O(2) spin model in three
dimensions, which should lie in the same universality class,
obtaining

M ~1.3218/L 9)
for the magnetic gap. In order to ascertain the finite-size
effect on our measurements, we performed extra simula-
tions on a 202 x 20 lattice at 8 = 2.25 and 2.5. The mass
and size of 07" channel are almost unchanged as the lat-
tice size increases from 16 to 20. We also find that our
estimates for the tensor state are consistent with no finite
volume dependence at § = 2.25. However, the tensor mass
was found to increase by about 4% and the effective radius
by about 7% from 16 to 20 lattices at 3 = 2.5. We do not
have enough data to extrapolate the mass and the radius to
the infinite volume limit or to check whether the difference
is due to statistical errors or whether there is an incomplete

3 The results for 163 lattice in Fig. 4 are shown only as an il-
lustration. Comparison of the data for the effective mass on two
lattice sizes reveals that none of our states could be interpreted
as torelon pairs, since no mass reduction of sufficient magnitude
was found as the lattice volume was reduced.
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Fig. 6. Tensor glueball wave function on a 16% lattice at
B8 =2.0,2.25 and 2.5

convergence. Given that no mass reductions of sufficient
magnitudes were found as the lattice volume is changed,
none of our states could be interpreted as a torelon pair.

In order to get some quantitative information on the
effective radius, the glueball wave functions are fitted in
the range 3 <r <8 by the form (6). This form fits the
data rather well for the scalar glueball with the best-
fit estimates obtained with a x2/Npr of 0.92-0.67. Due
to distortion? in the tensor wave function at small r at
[ = 2.5, a meaningful fit was possible only in the range
6 < r < 8. The effective radius obtained was confirmed by
examining the plateau in the ratio log[t)(r) /v (r +1)]. Note
that our logarithmically plotted wave functions (Fig. 7) are
merely illustrations.

To summarize: in the weak coupling region a spectrum
of massive 07, 0=~ and 2% glueballs is indicated with

m(0~7) <m(0tT) <m(27T).

Since there is a good signal for wave functions persisting
long enough to demonstrate convergence to the asymptotic
value, it seems to be reasonable to estimate the mass ra-
tios with our present method. The estimates of the masses
and rg, in lattice units, at various (-values are shown
in Tables 1-3.

Our results for lattice masses and mass ratios are gener-
ally, within statistical errors, in agreement with the exist-
ing Euclidean estimates [4, 5, 15, 19], if perhaps a little high
in some places. Qualitatively our results, at zero tempera-
ture, are in agreement with the scenario of a spectrum of
massive magnetic monopoles.

To extrapolate our effective radii to the continuum limit,
we take the dimensionless products of sizes so that the
scale, a, in which they are expressed cancels (Table 4). We
choose to take products of the effective radii, 79 2 /a, to a+/o,

4 Because of the distortion and impossible complete elimina-
tion of all the excited states, especially near r ~ 0, it follows
that (6) holds only in the limited interval, which does not in-
clude the vicinity of r ~ 0.
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Fig. 7. The logarithmic plot of the scalar and tensor glueball
wave functions at 8 = 2.25 and 2.5. The effective radii can be
obtained from the inverse slopes of the curves

Table 1. Masses of scalar glueballs in lattice units for two spa-
tial extensions, L = 16 and 20

Mass
o+t 0
B/L 16 20 16 20
2.0 0.803(6) 0.441(4)
2.25 0.523(3) 0.527(3) 0.266(3) 0.261(4)
2.5 0.364(3) 0.369(2) 0.182(2)

Table 2. Sizes of scalar glueballs in lattice units for two spatial
extensions, L = 16 and 20

o Size -
B/L 16 20 16 20
2.0 1.4(2) 1.0(1)
2.25 2.75(4) 2.8(3) 2.14(4)  2.2(2)
2.5 5.1(1.0) 5.2(9) 5.0(1.0)

Table 3. Mass and size of tensor glueballs in lattice units for
two spatial extensions, L = 16 and 20

Mass Size
B/L 16 20 16 20
2.0 1.2(1) 5.0(7)
2.25 0.82(2) 0.81(6) 9.7(1.7)  9.8(1.4)
2.5 0.544(2)  0.58(1)  10.1(2.6) 10.2(2.4)

since the string tension is our most accurately calculated
quantity. As in the (3+1)D confining theories, we expect
that a dimensionless product of physical quantities, such as
79,2+/0, will approach their continuum limit with a correc-
tion of O(a2g), where a.f is the effective lattice spacing in
“physical units” when the mass gap has been renormalized
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Table 4. Glueball sizes in the units of string tension
B K(=d%0) aeg  To++\/T To--\0 Tore\/o
2.0 0.0508(5) 0.0856 0.31(14) 0.24(9)  1.13(18)
225  0.0221(3) 0.0481 0.40(17) 0.32(16) 1.14(22)
2.5 0.0119 0.0272  0.56(21) 0.50(19) 1.11(25)

to a constant [19]. The string tension, K (= a?c), is obtained
by using the Wilson loop averages and fitting the on-axis
data with V (r). In Fig. 8 we show the product r¢,2+/0 plot-
ted against acg. Since the products are plotted against aeg,
the continuum extrapolations are simple straight lines. We
notice that the product rg 24/0 varies only slightly over the
fitting range. The non-zero lattice spacing values of the
product are within 0.04-0.29 and 0.01-0.02 standard devia-
tions of the extrapolated zero lattice spacing results for the
scalar and tensor glueballs, respectively. The striking fea-
ture of this plot is the little variation of the product with aeg.
This will make for very accurate and reliable continuum ex-
trapolations. Linear extrapolations to the continuum limit
yield values of 0.60 £ 0.05 and 1.1240.03, in the units of
string tension, for the scalar and tensor states, respectively.
In contrast to the tensor, the scalar glueball size shows sig-
nificant finite-spacing errors. By setting the string tension
to 420 MeV, we obtain the physical radii of 0.28(7) and
0.52(5) fm, for the scalar and tensor glueballs, respectively.
Our results show the size of the tensor glueball roughly two
times as large as the scalar glueball. These estimates agree
with the rough estimates of glueball sizes obtained at var-
ious temperatures in [11]. This is an improvement over the
estimates obtained in [9] where the predicted radius for the
tensor glueball (~ 0.8 fm) was found to be four times larger
than the scalar glueball radius.

3.2 Finite temperature results

To check the consistency of our method, we performed
a study on an asymmetric lattice: 162 x 4 at 3 = 2.25. The
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Fig. 8. Glueball radii in the units of string tension as a function
of the effective spacing, acf. Extrapolations to the continuum
limit are shown as dashed lines
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procedure itself is a straightforward extension of the pro-
cedure adopted in the previous subsection. We do not plan
to study the high-temperature aspects of this model here
but focus on the behaviour of the glueball mass and wave
function in the deconfined region.

The physical temperature T' = 1/(aNy), is given via the
lattice parameters as follows:

T/\o= —

NVEK -

For completeness, we give a temperature estimate of 1.125
in the units of string tension. By setting the string ten-
sion to 420 MeV, we estimate a physical temperature of
T ~ 1.25T,., where the T, ~ 360 MeV at pseudo-critical
coupling B. = 1.87(2) [20]. One expects [21] that the high-
temperature phase has a massless photon and the linear
potential is replaced by the two-dimensional logarithmic
Coulomb potential. This logarithmic behaviour is equiva-
lent to a power-law dependence of the Wilson loop correla-
tion function,

C(r) = (P (r)P(0)) ~ x| "D,

(10)

(11)

with an exponent that decreases as T' increases. Further-
more, since the high-temperature phase of the gauge the-
ory corresponds to the ordered phase of the spin system,
the predicted power-law behaviour of the correlation func-
tion is just like that of a two-dimensional U(1)-invariant
spin system —a 2D XY model.

Figure 9 shows a plot of correlation functions ver-
sus separation. The straight line indicates the fit to the
form (11). The finite temperature phase transition is vis-
ible in the change of the correlation function from expo-
nential to power-law behaviour. Thus it becomes evident
that T' > T, in our simulation. It can be seen that the
form (11) fits the data rather well. Nonetheless, our Monte
Carlo simulations were unable to confirm that the expo-
nent is moving towards the value of 0.25 (that of the 2D
XY model [22]) predicted for the continuum theory. Our
estimated value for the exponent is four times larger than

-1

1.4}

log< P'(r)P(0) >
i

]
-
[e2)

'
N
~
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log(r)

Fig. 9. The logarithmic plot of the correlation function at
B = 2.25. The straight line indicates power-law behaviour
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the predicted value. This indicates that our 3-value of 2.25
is not large enough to give us reason to hope that we are
approaching continuum physics. An interesting feature to
explore in this context is whether the coupling to the mat-
ter fields in the leading order (8 — oco0) calculations will
move the critical exponent towards the predicted value.

In the deconfinement phase above the critical tem-
perature, glueballs are no more elementary excitations.
At high temperatures we have a plasma that behaves in
bulk roughly like a free gas of quarks and gluons, thus
forming a new phase, i.e., the quark—gluon plasma (QGP)
phase. Above the critical temperature T, properties such
as confinement and chiral symmetry breaking disappear.
A detailed understanding of thermal glueballs gained over
the last decade can be found in [11,23-27] and the refer-
ences therein. As a result, quarks and gluons are liberated
and tremendous changes are expected in the mass spec-
trum. Figure 10 shows the scalar and tensor wave functions
obtained through the same analysis as in Figs. 3 and 6.
Our results indicate that no significant changes occur in
the scalar and tensor wave functions. Glueball masses ap-
pear to be almost unaffected. By comparing the results at
T =0and T = 360, we observe an effective mass reduction,
(amg(T ~0) —amg(T ~ 360)), of about 4%, with statisti-
cal uncertainties typically on less than a percent level, for
the 0T+ and 2% glueball modes. This appears to be a very
small change, since we expect a rather continuous mass re-
duction of glueballs in the deconfined phase. This might be
due to the fact that for zero momentum the power-law be-
haviour of the correlation function leads at short distances
to the spin-wave results, which prevents us from seeing the
massless excitations.

The non-vanishing effective masses would suggest the
presence of glueball modes above T. Other work on finite
temperature SU(3) [11,23] has also confirmed the survival
of correlations above T, in the scalar and tensor colour-
singlet modes. However, these studies have shown that
thermal mass changes rather continuously across the crit-
ical temperature. The existence of the effective mass gives
rise to the possibility that some of the nonperturbative
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Fig. 10. Scalar and tensor glueball wave functions measured
on 162 x 4 lattice at 8=2.25
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effects survive in the deconfined phase, and the colour-
singlet modes exist as metastable states above T,. The
metastable states in the ordered phase (large () appear
to be caused by the unusually large separation of a vor-
tex pair, which may take many sweeps to recombine. Near
the transition the number of vortices increase, and some of
them begin to unbind. This eventually drives the system
into a disordered phase as one moves to the region T' < Tt.

Whether bound or metastable modes, the glueballs can
decay into two or more gluons, thus acquiring a finite
width, which is expected to become less negligible in the
deconfined phase. Thus it becomes important to take into
account the effect of width in best-fit analysis. This might
also explain a very modest reduction of our masses at
T > T,. However, from this study, it is not possible to de-
termine whether such colour-singlet modes really survive
above T, as metastable states. An extensive systematic an-
alysis, of unquenched improved lattice QCD at finite tem-
perature, along these lines is under way [28].

4 Summary and conclusion

We have studied wave functions and sizes of scalar and
tensor glueballs using an improved 3-dimensional U(1) lat-
tice model. In this preliminary study we take a more dir-
ect approach to the problem; instead of fixing a gauge or
a path for the gluons, we measure the correlation functions
from our lattice operators from spatially connected Wilson
loops which, being the expectation values of closed-loop
paths, are gauge invariant. This approach has the advan-
tage that the disentangling of the glueball and torelon is
usually taken care of automatically by the choice of Wilson
or Polyakov loops. We observed that the size of the ten-
sor glueball is roughly two times larger than the size of the
scalar glueball. We believe that our estimates are more re-
liable than the results obtained in [9], where the size of the
tensor glueball was found to be ~ 0.8 fm, four times as large
as its scalar counterpart. The predicted zero lattice spac-
ing results are not actually found by extrapolation to zero
lattice spacing, but are obtained instead from calculations
at 0 of 2.2 of glueball size, with no accurate representa-
tion of the effect of the absence of extrapolation. Also the
results were of limited interest because of their manifest
dependence on the gauge chosen and the problem of disen-
tangling of the glueballs and torelons.

Finally, for completeness, we extended our method to
measure the wave function and mass for a finite tempera-
ture deconfinement phase. For the lowest 0t+ and 2T+
glueballs, no significant mass reduction was observed in the
deconfined phase, while the wave functions remain almost
unchanged. The existence of the effective mass indicates
that colour-singlet modes may survive in the deconfined
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phase as metastable states. In such a case glueball decay
and decay width, as a spectral component, in the decon-
finement phase are the most feasible candidates for a more
reliable analysis for the future studies.
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